AVALIAÇÃO DA RESISTÊNCIA DAS BACTÉRIAS DO GÊNERO Pseudomonas aeruginosa POR MEIO DO MÉTODO DE INATIVAÇÃO DE CARBAPENÊMICOS MODIFICADOS (mCIM) E DO EDTA-CIM (eCIM)

EVALUATION OF THE RESISTANCE OF BACTERIA OF THE GENUS Pseudomonas aeruginosa USINGN THE MODIFIED CARBAPENEM INACTIVATION METHOD (mCIM) AND EDTA-CIM (eCIM) Andressa Késsia da Mota Leite¹, João Augusto Rocha

Autores

  • Andressa Késsia da Mota Leite Centro Universitário Aparício Carvalho - FIMCA
  • João Augusto Rocha de Carvalho Teixeira Centro Universitário Aparício Carvalho - FIMCA
  • Luiz Filipe da Silva Santos Centro Universitário Aparício Carvalho - FIMCA
  • Tatiane Silva de Carvalho Centro Universitário Aparício Carvalho – FIMCA
  • Juliana Loca Furtado Fontes Centro Universitário Aparício Carvalho – FIMCA

DOI:

https://doi.org/10.37157/fimca.v12i2.1133

Palavras-chave:

Pseudomonas aeruginosa, Resistência antimicrobiana, Carbapenemases, mCIM, CIM

Resumo

A Pseudomonas aeruginosa é uma bactéria de importância médica oportunista, presente em ambientes hospitalares, podendo ser considerada uma infecção grave quando adquirida por pacientes imunocomprometidos. Possui uma grande variabilidade de mecanismos de resistência antimicrobiana, sendo a mais perigosa a produção de carbapenemases, o que torna o tratamento clínico um desafio. Os carbapenêmicos são considerados antibióticos de última escolha, geralmente indicados no tratamento de infecções causadas por bactérias multirresistentes. Contudo, seu uso vem sendo progressivamente limitado devido ao aumento significativo dos mecanismos de resistência, especialmente pela presença de cepas produtoras de carbapenemases, o que reduz a eficácia dessa classe de antimicrobianos na prática terapêutica. Sobre esse viés, os métodos fenotípicos mCIM (Modified Carbapenem Inactivation Method) e eCIM (EDTA-modified Carbapenem Inactivation Method) vêm sendo recomendados pelo CLSI, demonstrando-se uma ferramenta de fácil uso e barato para triar as P. aeruginosa produtoras de carbapenêmicos. Este artigo tem como objetivo principal avaliar a resistência de cepas de origem clínica de P. aeruginosa por meio dos métodos fenotípicos mCIM (Modified Carbapenem Inactivation Method) e eCIM (EDTA-modified Carbapenem Inactivation Method). Foram utilizadas cepas de P. aeruginosa de origem clínica, previamente isoladas em ágar Mueller-Hinton, e uma cepa de controle, Escherichia coli ATCC 25922. Os ensaios envolvendo mCIM e o eCIM foram realizados seguindo os padrões padronizados pelo CLSI e EUCAST, usando discos de meropenem (10 µg) utilizando ou não o EDTA. Após a observação e interpretação dos halos, foi possível diferenciar a presença ou ausência de carbapenemases do tipo serino-?-lactamase e metalo-?-lactamase (MBL). Com esse estudo, obtivemos altas taxas de sensibilidade e especificidade (>98% e >95%, respectivamente), o que permite a diferenciação de MBLs de outros tipos de carbapenemases. Ressaltando ainda o baixo custo e simplicidade do procedimento, o método em questão é apto para a utilização em laboratórios com materiais limitados, porém, este método identifica apenas genes, sendo preciso utilizar técnicas moleculares para complementação. Os métodos fenotípicos mCIM e eCIM são ferramentas acessíveis, padronizadas e utilizáveis para a detecção de carbapenemases em P. aeruginosa.  A aplicação desta técnica contribui para um diagnóstico rápido e para a escolha da melhor terapia antimicrobiana, ajudando no enfrentamento das infecções causadas pelo patógeno multirresistente.

Pseudomonas aeruginosa is an opportunistic bacterium of medical importance, which is present in hospital environments and can cause serious infections in immunocompromised patients. It has a wide range of antimicrobial resistance mechanisms, the most dangerous of which is the production of carbapenemases, making treatment a clinical challenge. Carbapenems are considered antibiotics of last resort, generally indicated for the treatment of infections caused by multidrug-resistant bacteria. However, their use has been progressively limited by the emergence of resistance mechanisms, particularly carbapenemase-producing strains, which reduce the efficacy of this class of antimicrobials in clinical practice. With this in mind, the phenotypic methods mCIM (Modified Carbapenem Inactivation Method) and eCIM (EDTA-modified Carbapenem Inactivation Method) have been recommended by CLSI. They are easy and inexpensive tools for screening for carbapenemase-producing P. aeruginosa.  The main objective of this article is to evaluate the resistance of clinical strains of P. aeruginosa using the phenotypic methods mCIM (Modified Carbapenem Inactivation Method) and eCIM (EDTA-modified Carbapenem Inactivation Method). Clinical strains of P. aeruginosa previously isolated on Mueller-Hinton agar were used, with a control strain of Escherichia coli ATCC 25922. The tests involving mCIM and eCIM were carried out according to CLSI and EUCAST standards, using meropenem discs (10 µg) with or without EDTA. After observing and interpreting the halos, it was possible to differentiate whether or not serine-?-lactamase and metallo-?-lactamase (MBL) carbapenemases were present. In this study, we achieved high sensitivity (>98%) and specificity (>95%), enabling differentiation of MBLs from other carbapenemase types. In addition to its low cost and simplicity, the method is suitable for use in laboratories with limited resources. However, this method does not identify genes, and molecular techniques must be used to complement it. The mCIM and eCIM phenotypic methods are accessible, standardized, and usable tools for detecting carbapenemases in P. aeruginosa.  The application of this technique facilitates rapid diagnosis and selection of optimal antimicrobial therapy, helping to address infections caused by multidrug-resistant pathogens.

Biografia do Autor

Andressa Késsia da Mota Leite, Centro Universitário Aparício Carvalho - FIMCA

Acadêmica de Biomedicina

João Augusto Rocha de Carvalho Teixeira, Centro Universitário Aparício Carvalho - FIMCA

Acadêmico de Biomedicina

Luiz Filipe da Silva Santos, Centro Universitário Aparício Carvalho - FIMCA

Acadêmico de Biomedicina

Tatiane Silva de Carvalho, Centro Universitário Aparício Carvalho – FIMCA

Biomédica pela Faculdade São Lucas, Mestre em Biologia Experimental (UNIR)

Juliana Loca Furtado Fontes, Centro Universitário Aparício Carvalho – FIMCA

Docente

Referências

ARBER, W. Horizontal Gene Transfer among Bacteria and Its Role in Biological Evolution. Life, v. 4, n. 2, p. 217–224, 2014. https://doi.org/10.3390/life4020217.

BAIL, L.; ITO, C.A.S.; AREND, L.N.V.S.; et al. Activity of imipenem-relebactam and ceftolozane-tazobactam against carbapenem-resistant Pseudomonas aeruginosa and KPC-producing Enterobacterales. Diagnostic Microbiology and Infectious Disease, v. 102, n. 1, 2022. https://doi.org/10.1016/j.diagmicrobio.2021.115568

BLAIR, J.M. A.; WEBBER, M.A.; BAYLAY, A.J.; OGBOLU, D.O.; et al. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, v. 13, n. 1, p. 42–51, 2014. https://doi.org/10.1038/nrmicro3380

BREIDENSTEIN, E. B. M.; DE LA FUENTE-NÚÑEZ, C.; HANCOCK, R. E. W. Pseudomonas aeruginosa: All roads lead to resistance. Trends in Microbiology, v. 19, n. 8, p. 419–426, 2011. https://doi.org/10.1016/j.tim.2011.04.005

JAMES, S. LEWIS II, J.S.; MATHERS, A.J.; BOBENCHIK, A. M.; et al. CLSI M100 performance standards for antimicrobial susceptibility testing. Washington: Clinical and Laboratory Standards Institute. p. 428, 2025. https://clsi.org/shop/standards/m100/

CODJOE, F. S.; DONKOR, E. S. Carbapenem Resistance: A Review. Medical Sciences, v. 6, n. 1, p. 1-28, 2017. https://doi.org/10.3390/medsci6010001

DAS, T.; SEHAR, S.; MANEFIELD, Mi. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environmental Microbiology Reports, v. 5, n. 6, p. 778–786, 2013. https://doi.org/10.1111/1758-2229.12085

DONLAN, R.M. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, v. 8, n. 9, p. 881–890, 2002. https://doi.org/10.3201/eid0809.020063

DORTET, L.; POIREL, L.; NORDMANN, P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrobial Agents and Chemotherapy, v. 56, n. 12, p. 6437–6440, 2012. https://doi.org/10.1128/AAC.01395-12

EL SOLH, A. A.; ALHAJHUSAIN, A. Update on the treatment of Pseudomonas aeruginosa pneumonia. Journal of Antimicrobial Chemotherapy, v. 64, n. 2, p. 229–238, 2009. https://doi.org/10.1093/jac/dkp201

EUCAST. Disponível em: <https://www.eucast.org/>. Acesso em: 15 jul. 2025.

GHAFOOR, A.; HAY, I.D.; REHM, B.H. A. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Applied and Environmental Microbiology, v. 77, n. 15, p. 5238–5246, 2011. https://doi.org/10.1128/aem.00637-11

HANCOCK, R. E. W.; SPEERT, D. P. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resistance Updates, v. 3, n. 4, p. 247–255, 2000. https://doi.org/10.1054/drup.2000.0152

HENDRIE, C. A. Naloxone-sensitive hyperalgesia follows analgesia induced by morphine and environmental stimulation. Pharmacology Biochemistry and Behavior, v. 32, n. 4, p. 961–966, 1989. https://doi.org/10.1016/0091-3057(89)90066-x

HENRICHFREISE, B.; WIEGAND, I.; PFITER, W.; WIEDEMANN, B. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrobial Agents and Chemotherapy, v. 51, n. 11, p. 4062–4070, 2007. https://doi.org/10.1128/AAC.00148-07

HIRSCH, E.B.; TAM, V. H. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Review of Pharmacoeconomics and Outcomes Research, v. 10, n. 4, p. 441–451, 2010. https://doi.org/10.1586/erp.10.49

ITO, C. A. S.; BAIL, L.; AREND, L. N. V. S.; et al. The activity of ceftazidime/avibactam against carbapenem-resistant Pseudomonas aeruginosa. Infectious Diseases, v. 53, n. 5, p. 386–389, 2021. https://doi.org/10.1080/23744235.2020.1867763

JACQUELINE, C.; CAILLON, J. Impact of bacterial biofilm on the treatment of prosthetic joint infections. The Journal of antimicrobial chemotherapy, v. 69 Suppl 1, n. SUPPL1, 2014. https://doi.org/10.1093/jac/dku254

KANG, C. I.; KIM, S.; KIM, H.; et al. Pseudomonas aeruginosa bacteremia: Risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clinical Infectious Diseases, v. 37, n. 6, p. 745–751, 2003. https://doi.org/10.1086/377200

LISTER, P. D.; WOLTER, D. J.; HANSON, N. D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, v. 22, n. 4, p. 582–610, 2009. https://doi.org/10.1128/cmr.00040-09

LOGAN, L.K.; WEINSTEIN, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. The Journal of Infectious Diseases, v. 215, n. 1, p. S28–S36, 15 2017. https://doi.org/10.1093/infdis/jiw282

MAKINSON, A.; PARK, L. S.; STONE, K.;et al. Risks of Opportunistic Infections in People With Human Immunodeficiency Virus With Cancers Treated With Chemotherapy. Open Forum Infectious Diseases, v. 8, n. 8, 2021. https://doi.org/10.1093/ofid/ofab389

MORADALI, M. F.; GHODS, S.; REHM, B. H. A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, v. 7, n. FEB, p. 249785, 2017. https://doi.org/10.3389/fcimb.2017.00039

MUNITA, J. M.; ARIAS, C. A. Mechanisms of antibiotic resistance. Virulence Mechanisms of Bacterial Pathogens, p. 481–511, 2016. https://doi.org/10.1128/microbiolspec.vmbf-0016-2015

NORDMANN, P.; NAAS, T.; POIREL, L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerging Infectious Diseases, v. 17, n. 10, p. 1791–1798, 2011. https://doi.org/10.3201/eid1710.110655

PANG, Z.; RAUDONIR, R.; GLICK, B. R.; et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, v. 37, n. 1, p. 177–192, 2019. https://doi.org/10.1016/j.biotechadv.2018.11.013

PARK, S. Y.; PARK, H. J.; MOON, S. M.; et al. Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosa pneumonia. BMC Infectious Diseases, v. 12, n. 1, p. 1–6, 2012. https://doi.org/10.1186/1471-2334-12-308

PIERCE, V. M.; SIMMER, P. J.; LONSWAY, D. R.; et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among enterobacteriaceae. Journal of Clinical Microbiology, v. 55, n. 8, p. 2321–2333, 2017. https://doi.org/10.1128/jcm.00193-17

QUEENAN, A. M.; BUSH, K. Carbapenemases: the Versatile ?-Lactamases. Clinical Microbiology Reviews, v. 20, n. 3, p. 440–458, 2007. https://doi.org/10.1128/cmr.00001-07

REYNOLDS, D.; KOLLEF, M. The Epidemiology, Pathogenesis, and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs, v. 81, n. 18, p. 2117–2131, 2021. https://doi.org/10.1007/s40265-021-01635-6

SANDOVAL-MOTTA, S.; ALDANA, M. Adaptive resistance to antibiotics in bacteria: a systems biology perspective. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, v. 8, n. 3, p. 253–267, 2016. https://doi.org/10.1002/wsbm.1335

SARABHAI, S.; SHARMA, P.; CAPALASH, N. Ellagic Acid Derivatives from Terminalia chebula Retz. Downregulate the Expression of Quorum Sensing Genes to Attenuate Pseudomonas aeruginosa PAO1 Virulence. PLOS ONE, v. 8, n. 1, p. e53441, 2013. https://doi.org/10.1371/journal.pone.0053441

SFEIR, M. M.; HAYDEN, J. A.; FAUNTLEROY, K. A.; et al. EDTA-modified carbapenem inactivation method: A phenotypic method for detecting metallo-?-lactamase-producing enterobacteriaceae. Journal of Clinical Microbiology, v. 57, n. 5, 2019. https://doi.org/10.1128/jcm.01757-18

SHARIATI, A.; AZIMI, T.; ARDEBILI, A.; et al. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes and New Infections, v. 21, p. 75–80, 2018. https://doi.org/10.1016/j.nmni.2017.10.013

TACCONELLI, E.; MAGRINI, N. WHO global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, p. 1-7, 2017. https://www.aidsdatahub.org/sites/default/files/resource/who-global-priority-list-antibiotic-resistant-bacteria.pdf

TAMMA, P. D.; SIMNER, P. J. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. Journal of Clinical Microbiology, v. 56, n. 11, 2018. https://doi.org/10.1128/jcm.01140-18

TAYLOR, P. K.; YEUNG, A. T. Y.; HANCOCK, R. E. W. Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies. Journal of Biotechnology, v. 191, p. 121–130, 2014. https://doi.org/10.1016/j.jbiotec.2014.09.003

TUON, F. F.; GORTZ, L. W.; ROCHA, J. L. Risk factors for pan-resistant Pseudomonas aeruginosa bacteremia and the adequacy of antibiotic therapy. Brazilian Journal of Infectious Diseases, v. 16, n. 4, p. 351–356, 2012. https://doi.org/10.1016/j.bjid.2012.06.009

TUON, F. F.; CIESLINSKI, J.; RODRIGUES, S. S.; et al. Evaluation of in vitro activity of ceftolozane–tazobactam against recent clinical bacterial isolates from Brazil – the EM200 study. Brazilian Journal of Infectious Diseases, v. 24, n. 2, p. 96–103, 2020. https://doi.org/10.1016/j.bjid.2020.04.004

TURKINA, M.V.; VIKSTRÖM, E. Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. Journal of innate immunity, v. 11, n. 3, p. 263–279, 2019. https://doi.org/10.1159/000494069

Publicado

2025-10-30

Como Citar

Leite, A. K. da M., Teixeira, J. A. R. de C., Santos, L. F. da S., Carvalho, T. S. de, & Fontes, J. L. F. (2025). AVALIAÇÃO DA RESISTÊNCIA DAS BACTÉRIAS DO GÊNERO Pseudomonas aeruginosa POR MEIO DO MÉTODO DE INATIVAÇÃO DE CARBAPENÊMICOS MODIFICADOS (mCIM) E DO EDTA-CIM (eCIM): EVALUATION OF THE RESISTANCE OF BACTERIA OF THE GENUS Pseudomonas aeruginosa USINGN THE MODIFIED CARBAPENEM INACTIVATION METHOD (mCIM) AND EDTA-CIM (eCIM) Andressa Késsia da Mota Leite¹, João Augusto Rocha . REVISTA FIMCA, 12(2), 11-18. https://doi.org/10.37157/fimca.v12i2.1133

Edição

Seção

Artigos Originais / Original Papers